Toward a microscopic calculation of induced fission cross sections

Walid Younes
Lawrence Livermore National Laboratory

This work was carried out under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

UCRL-PRES-211247
Introduction

- Surrogate technique for (n,f) reactions that can't be measured
 - use surrogate reactions, e.g., (t,p), to populate same compound nucleus
 - Use model to compensate between (t,p) and (n) reactions

- Younes et al., 67 024610 (2003), ...
- Phenomenological treatment of fission
- Extend to $E_n = 20$ MeV

- Microscopic treatment of fission
 - Self-consistent barrier properties
 e.g., Bonneau et al., EPJA 21, 391 (2004)
Surrogate-reaction technique: formalism I

Basic technique:

<table>
<thead>
<tr>
<th>Measure</th>
<th>Calculate</th>
<th>Fit model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{(t,p)}(E_x) = \sum_{J^\pi} P_{(t,p)}(J^\pi) \times P_f(E_x, J^\pi)$</td>
<td>$\sigma_{(n,f)}(E_n) = \sum_{J^\pi} \sigma_{CN}(E_n, J^\pi) \times P_f(E_x, J^\pi)$</td>
<td>$\rightarrow P_f(E_x, J^\pi)$</td>
</tr>
</tbody>
</table>

Basic ingredients:

- (t,p) reaction population
- (n) reaction cross section
- **Fission model**
 - $P_f(E_x, J^\pi)$

Deduce, Calculate, Reuse
Double-humped fission model

Procedure:
- adjust barrier A & B heights to fit measured $P_{(t, pf)}$

Discrete levels:
- based on experiment

Continuous level density:
- micro/macro model
 + grand-partition func

Width fluctuations
Non-resonant barrier coupling
No class-II states
Surrogate-reaction technique: formalism II

Basic technique:

<table>
<thead>
<tr>
<th>Measure</th>
<th>Calculate</th>
<th>Fit model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{(t,\text{pf})}(E_x) = \sum_{J^\pi} P_{(t,p)}(J^\pi) \times P_f(E_x, J^\pi)$</td>
<td>$\sigma_{(n,f)}(E_n) = \sum_{J^\pi} \sigma_{CN}(E_n, J^\pi) \times P_f(E_x, J^\pi)$</td>
<td>E_x (MeV)</td>
</tr>
<tr>
<td>Reuse</td>
<td>Deduce</td>
<td>Calculate</td>
</tr>
</tbody>
</table>

- Fit is not perfect
 - Model is over-constrained
 - Relative $P_f(E_x, J^\pi)$ are robust
- Renormalize to $P_{(t,\text{pf})}$ data

![Graph showing best fit to fission probabilities for $^{234}\text{U}(t,\text{pf})$.](image)

- Britt et al.
- This work
Surrogate reaction technique: proof-of-principle

Fission Probability

\[
\sigma_{n,t}(E_n) \times \frac{P_{t,p}^{(expt)}(E_x)}{P_{t,p}^{(calc)}(E_x)}
\]

Very good agreement, but limited to range of surrogate data

\[
235U(n,f) \text{ cross section}
\]
Surrogate technique: extension to $E_n = 20$ MeV

- **1st-chance fission**: $^{235}\text{U}(n,0nf)$
 - $E_n \sim \text{few MeV} \rightarrow \text{use surrogate result}$
 - Higher $E_n \rightarrow \text{smooth (linear) extrapolation}$

- **2nd+higher-chance fission**: $^{235}\text{U}(n,xnf) \times \geq 1$
 - Assume for 2nd chance:
 $P[\text{fission, given } ^{235}\text{U}^* = ^{235}\text{U}(n,n')] = P[\text{fission, given } ^{235}\text{U}^* = n+^{234}\text{U}]$
 - Then:
 Calculated $\sigma_{(n,n')}(^{235}\text{U},E_n)$ is sum of two contributions
 - $\sigma_{(n,n')}(^{235}\text{U},E_n)$ folded with EQ neutron distribution (Maxwell)
 - $\sigma_{(n,n')}(^{235}\text{U},E_n)$ folded with PEQ neutron distribution (HMS calculation)

Only one free parameter for 2nd-chance fission:
$\rightarrow \text{Maxwell-distribution temperature}$
Extended surrogate technique: proof-of-principle

\[^{235}\text{U} (n,f) \text{ cross section} \]

- Excellent agreement with measured \(\sigma_{(n,f)} \)
- Slope of 1st-chance fission depends on
 - Fission barriers
 - Level densities

\[
\frac{\Gamma_n}{\Gamma_f} \propto \frac{\exp \left(2\sqrt{a_n (E - B_n)} \right)}{\exp \left(2\sqrt{a_f (E - B_f)} \right)}
\]

(very roughly)

Need consistent calculations of barriers, level densities
Details of the HF+BCS calculations

• Code:
 ➔ HFODD v2.09i (Dobaczewski et al., CPC 1997-2005)
 ➔ Modified to print out single-particle wave functions in cylindrical basis

• Force:
 ➔ SKM* (standard)
 ➔ Pure pairing BCS, G_p and G_n adjusted to match experimental gaps

• Basis:
 ➔ Up to 31 oscillator quanta in cartesian directions
 ➔ Up to 1140 basis states
Check of the single-particle wave functions

- Calculated ground-state $<Q_{20}>$:

\[
\langle \text{G.S.} \mid \hat{Q}_{20} \mid \text{G.S.} \rangle = 2 \sum_{i>0} \langle i \mid \hat{Q}_{20} \mid i \rangle v_i^2
\]

\[
\left| i \right\rangle = \sum_{j>0} C_{j,i} \left| N^j, n_z^j, \Lambda^j, \Sigma^j \right\rangle
\]

- Within HFODD (internal)
- From s.p. Wave functions (external)

Very good agreement
\(^{236}U \) potential surface along the symmetric path

- Barriers along symmetric path
 - \(E_A \approx 7.8 \text{ MeV} \)
 (accepted \(\approx 5.75 \text{ MeV} \))
 - \(E_B \approx 11.8 \text{ MeV} \)
 (accepted \(\approx 5.75 \text{ MeV} \))

Next: Explore \(Q_{22} \), \(Q_{30} \)
Barriers with Q_{22}, Q_{30} degrees of freedom

- Barriers
 - $E_A \approx 6.92 \text{ MeV}$
 (accepted $\approx 5.75 \text{ MeV}$)
 - $E_B \approx 6.37 \text{ MeV}$
 (accepted $\approx 5.75 \text{ MeV}$)

Next: zero-point corrections
ATDHF + Belyaev cranking

• Libert *et al.*, PRC 60, 054301 (1999)

• Parameterize
 • Nuclear shape
 \[q_0 \equiv \langle 2z^2 - x^2 - y^2 \rangle \]
 \[q_2 \equiv \langle x^2 - y^2 \rangle \]
 Not used presently

• Nuclear orientation
 \[q_1 \equiv \langle -2 iyz \rangle \]
 \[q_{-1} \equiv \langle -2 xz \rangle \]
 \[q_{-2} \equiv \langle 2 ixy \rangle \]

• Study response to slowly-varying field
Zero-Point-Energies from ATDHF + cranking

- Define:

\[\Delta V_{ij} \equiv \frac{M_{ij}^{(-2)}}{M_{ij}^{(-3)}} \]

\[M_{ij}^{(-k)} \equiv \sum_{\mu\nu} \frac{\langle \phi | \tilde{Q}_i | \mu\nu \rangle \langle \mu\nu | \tilde{Q}_j | \phi \rangle}{(E_\mu + E_\nu)^k} \]

- Zero-point vibrational energy:

\[\Delta V_{vib} = \Delta V_{0,0}, \quad \tilde{Q}_0 \equiv \tilde{Q}_{20} \]

- Zero-point rotational energy:

\[\Delta V_{rot} = \Delta V_{-2,-2} + \Delta V_{-1,-1} + \Delta V_{1,1} \]

\[\tilde{Q}_{-2} \equiv 2i x y, \quad \tilde{Q}_{-1} \equiv -2x z, \quad \tilde{Q}_1 \equiv -2i y z \]
Zero-Point-Energies from ATDHF + cranking

• Define:

\[
\Delta V_{ij} \equiv \frac{M_{ij}^{(-2)}}{M_{ij}^{(-3)}}
\]

\[
M_{ij}^{(-k)} \equiv \sum_{\mu \nu} \frac{\langle \phi | \bar{Q}_i | \mu \nu \rangle \langle \mu \nu | \bar{Q}_j | \phi \rangle}{(E_\mu + E_\nu)^k}
\]

• Zero-point vibrational energy:

\[
\Delta V_{vib} = \Delta V_{0,0}, \quad \bar{Q}_0 \equiv \bar{Q}_{20}
\]

• Zero-point rotational energy:

\[
\Delta V_{rot} = \Delta V_{-2,-2} + \Delta V_{-1,-1} + \Delta V_{1,1}
\]

\[
\bar{Q}_{-2} \equiv 2ixy, \quad \bar{Q}_{-1} \equiv -2xz, \quad \bar{Q}_1 \equiv -2iyz
\]

Calculated ZPEs are too large!
Zero-point energies at the barriers

- Assume 1D motion in Q_{20} only at
 - 1st barrier ($\langle Q_{22} \rangle \neq 0$)
 - 2nd barrier ($\langle Q_{30} \rangle \neq 0$)

<table>
<thead>
<tr>
<th></th>
<th>1st min</th>
<th>1st barrier</th>
<th>2nd barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔV_{vib} (MeV)</td>
<td>9.75</td>
<td>10.32</td>
<td>8.78</td>
</tr>
<tr>
<td>ΔV_{rot} (MeV)</td>
<td>11.85</td>
<td>15.88</td>
<td>17.84</td>
</tr>
<tr>
<td>ΔV_{tot} (MeV)</td>
<td>21.60</td>
<td>26.20</td>
<td>26.62</td>
</tr>
</tbody>
</table>

- Yields ZPE corrections
 - At 1st barrier: 4.60 MeV
 - At 2nd barrier: 5.02 MeV

Barriers are lowered too much!
Collective mass from ATDHF + cranking

- For Q_{20} only:

$$M_{22} \equiv \frac{M(-3)}{[M(-1)]^2}$$

$$M(-k) \equiv \sum_{\mu\nu} \left| \left\langle \mu\nu \left| \hat{Q}_{20} \right| \phi (q_{20}) \right\rangle \right|^2 \left(E_\mu + E_\nu \right)^k$$

$$B_{22} = \frac{1}{M_{22}}$$

- At 1st barrier ($<Q_{22}> \neq 0$):
 - $B_{22} = 280.24$ MeV b²

- At 2nd barrier ($<Q_{30}> \neq 0$):
 - $B_{22} = 408.95$ MeV b²

\[^{236}\text{U, along symmetric path} \]
Collective mass and pairing gaps

236U, along symmetric path

236U, along symmetric path
Calculated barrier properties for 236U

• Barrier heights:
 → $E_A \approx 6.92 - 4.60 = 2.32$ MeV (compared to 5.75 MeV)
 → $E_B \approx 6.37 - 5.02 = 1.35$ MeV (compared to 5.75 MeV)

 Too low!

• Barrier curvatures:

 $$V(q) = E_i - \frac{1}{2} \mu(q)(\hbar \omega_i)^2 (q - q_i)^2$$

 → $\hbar \omega_A \approx 2.89$ MeV (compared to 0.90 MeV)
 → $\hbar \omega_B \approx 1.22$ MeV (compared to 0.50 MeV)

 Too large!
What's wrong?

- Mistake (phases?)
- Wrong prescription for pairing interaction
 - Test: vary energy cutoff (ΔE) in calculation of moments

\[\Delta V_{\text{rot}} \]
\[\Delta V_{\text{vib}} \]

\[\Delta V_{\text{rot}} \]
\[\Delta V_{\text{vib}} \]

\[\Delta V_{\text{rot}} \]
\[\Delta V_{\text{vib}} \]

- Note slow convergence
- G_n, G_p, not constant with deformation
Conclusion

- Calculated
 - Microscopic energy surface

- Need to fix
 - Zero-point corrections
 - Collective mass

- Next:
 - Level densities
 - Fission probabilities \(\Rightarrow\) (n,f) cross sections

Thanks to A. Staszczak, H. Goutte, D. Gogny, J. Dobaczewski
Evolution of $\langle Q_{22} \rangle$ and $\langle Q_{30} \rangle$