Exotic Beam Summer School: Accelerators and Beams

26 July, 2011

Bradley M. Sherrill
FRIB Chief Scientist
Accelarators are used to produce important isotopes and make beams of them.

Start with the stable isotopes (black) and make all the others.

- Blue – around 3000 known isotopes
- Available today
- New territory to be explored with next-generation rare isotope facilities
Rare Isotope Production Mechanisms

- There are a variety of nuclear reaction mechanisms used to add or remove nucleons (jargon)
- Spallation
- Fragmentation
- Coulomb fission (photo fission)
- Nuclear induced fission
- Light ion transfer
- Fusion-evaporation (cold, hot, incomplete, …)
- Fusion-Fission
- Deep Inelastic Transfer
- Charge Exchange

There is no best method. Many still have interesting physics question relevant to their application to produce rare isotopes.
• Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 o Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 o Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include intermediate mass and target fragments.
• Spallation (ISOLDE, TRIUMF-Isac, EURISOL, SPES, …)
 o Name comes from spalling or cracking-off of target pieces.
 o Major ISOL mechanisms, e.g. 11Li made from spallation of Uranium.
• Fission (HRIBF, ARIEL, ISAC, JYFL, …)
 o There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy)
 o The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).
• Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.
• Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be \approxmb at >100 MeV/u
Fragmentation (Projectile)

- Pictorial model (above 50 MeV/u)

 - Parameters fit to experimental data (exponential form function of removed nucleons)
 - Energy independent cross sections (true above 50 MeV/u or so)
 - Production cross section does not depend on the target (rates do)

- More detailed models (e.g. ABRABLA (K-H Schmidt et al. - See http://www-win.gsi.de/charms/))

Production Mechanisms – High Energy

• Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 o Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 o Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include intermediate mass and target fragments.
• Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, …)
 o Name comes from spalling or cracking-off of target pieces.
 o Major ISOL mechanisms, e.g. 11Li made from spallation of Uranium.
• Fission (HRIBF, ARIEL, ISAC, JYFL, …)
 o There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy)
 o The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).
• Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.
• Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be \approxmb at >100 MeV/u
Spallation

Production Mechanisms – High Energy

• Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 o Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 o Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include \textit{intermediate mass and target fragments}.

• Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, …)
 o Name comes from spalling or cracking-off of target pieces.
 o Major ISOL mechanisms, e.g. ^{11}Li made from spallation of Uranium.

• Fission (HRIBF, ARIEL, ISAC, JYFL, …)
 o There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy))
 o The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).

• Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.

• Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be \approxmb at >100 MeV/u
Fission

- Pictorial Model

- LISE++ Fission Models (Tarasov et al.) LISE++

- The initial fragmentation step produces a wide range of excitation energies

- Can use photons, protons, nuclei, etc. to induce the fission

- Observation: For 500 MeV/u 238U the fragmentation and fission cross sections are approximately equal
Production Probability

• The probability of production of a fragment is related to its production cross section:

\[P = \frac{N(\tau)}{N_0} = \left(1 - e^{-\frac{\tau N_a \sigma}{A_t}}\right) \]

\[\tau \text{ target thickness (g/cm}^2\text{)} \]
\[N_a \text{ Avagodro’s number} \]
\[A_t \text{ target mass number} \]
\[\sigma \text{ production cross section} \]

• For production cross sections of 1 mb and target thickness of 1 g/cm² the production probability (and fragment rate) is high:

\[P = \frac{N(\tau)}{N_0} = \left(1 - e^{-\frac{1.6022 \times 10^{23} \times 1 \times 10^{-27}}{9}}\right) = 7 \times 10^{-5} \]

• Beam of \(10^{14}/\text{s}\) beam would yield \(7 \times 10^9 /\text{s}\)
Cross sections for production

Beam (into page) Target

\[\sigma = \pi \left(r_t + r_b \right)^2 \approx 600 \text{ mb} \]

Actual: \(^{16}\text{O} + ^{12}\text{C}\) interaction cross section: 1000 mb (measured at 970 MeV/u)

One nucleon removal
Around 50 mb (light nuclei)

\[P \approx 5\% \]

2n removal
5 mb

\[P = .5\% \]

And so on
Rule of thumb
\[.1 \times \text{for each neutron removed} \]

Note: Above around 300 MeV/u the interaction length is shorter than the electronic stopping range of the \(^{16}\text{O}\)
Accelerators

• The particle accelerator used for production is often called the “driver”

• Types
 – Cyclotron (NSCL, GANIL, TRIUMF (proton driver), HRIBF (proton driver), RIKEN RIBF)
 – Synchroton (GSI, FAIR-GSI)
 – LINAC (LINear ACcelerator) (FRIB, ATLAS - ANL)
 – Others like FFAGs (Fixed-Field Alternating Gradient) are currently not used

• Main Parameters
 – Top Energy (e.g. FRIB will have 200 MeV/u uranium ions)
 – Particle range (TRIUMF cyclotron accelerates hydrogen, hence is used for spallation)
 – Intensity or Beam Power (e.g. 400 kW = 8x6x10^{12}/s x 50GeV
 – Power = p\mu A \times \text{Beam Energy (GeV)} \quad (1 p\mu A = 6 \times 10^{12} /s)
Cyclotrons

- Relatively easy to operate and tune (only a few parts).
- Tend to be used for isotope production and places where reliable and reproducible operation are important.
- Intensity is moderately high, acceleration efficiency is high, cost low.
- Relativity is an issue, so energy is limited to a few hundred MeV/u.
- RIKEN Superconducting Ring Cyclotron 350 MeV/u.

http://images.yourdictionary.com/cyclotron
Synchrotron

- Can achieve high energy at modest cost – tend to be used to deliver the highest energies
- Beam is accelerated in bunches
- Beam is accelerated internally and then ejected
- Intensity is limited by the Coulomb force of particles within a bunch (Space Charge)
- The magnets must ramp and this can be difficult to do quickly for superconducting magnets

http://universe-review.ca/R15-20-accelerators.htm
There are many different types
At the right is the principle behind the drift tube linac introduced by Alverz
Intensity can be very high
Tuning can be difficult and complicated
FRIB will have around 400 separate cavities
Cost can be high
Used to provide the highest intensities
Electron linacs are widely used for medical applications
Rare Isotope Beam Production Techniques

- **Target spallation and fragmentation by light ions (ISOL – Isotope separation on line)**
 - Target/Ion Source
 - Accelerator → Post Acceleration
 - Beam
 - Target

- **Photon or particle induced fission**
 - Reactor
 - Neutrons
 - Electrons
 - Protons
 - Uranium Fission
 - Post Acceleration
 - Beam
 - Target

- **In-flight Separation following nucleon transfer, fusion, projectile fragmentation/fission**
 - Accelerator
 - Beams used without stopping
 - Fragment Separator
 - Beam
 - Gas catcher/ solid catcher + ion source
World view of rare isotope facilities

- Black – production in target
- Magenta – in-flight production

FRIB
Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University

Brad Sherrill EBSS July 2011, Slide 17
Jargon

• ISOL

400kW protons at 1 GeV is 2.4×10^{15} protons/s

• In-flight (projectile fragmentation is one production mechanism)

Less chemistry involved; beams at high energy
Advantages/Disadvantages of ISOL/In-Flight

In-flight:
- Provides beams with energy near that of the primary beam
 - For experiments that use high energy reaction mechanisms
 - Luminosity (intensity x target thickness) gain of 10,000
 - Individual ions can be identified
- Efficient, Fast (100 ns), chemically independent separation
- Production target is relatively simple

ISOL:
- Good Beam quality (π mm-mr vs. 30 π mm-mr transverse)
- Small beam energy spread for fusion studies
- Can use chemistry (or atomic physics) to limit the elements released
- 2-step targets provide a path to MW targets
- High beam intensity leads to 100x gain in secondary ions

400kW protons at 1 GeV is 2.4×10^{15} protons/s
In-Flight Production Example: NSCL’s CCF

Example: $^{86}\text{Kr} \rightarrow ^{78}\text{Ni}$

- **Ion sources**
- **K500**
 - $^{86}\text{Kr}^{14+}$, 12 MeV/u
- **K1200**
 - $^{86}\text{Kr}^{34+}$, 140 MeV/u
- **A1900**
 - $\Delta p/p = 5$
- **Stripping foil**
- **Production target**
- **Wedge**
- **Focal plane**

Transmission of 65% of the produced ^{78}Ni

Graphs:
- **Fragment yield after target**
- **Fragment yield after wedge**
- **Fragment yield at focal plane**

FRIB
Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University
Facility for Rare Isotope Beams, FRIB - USA
US Community’s Major New Initiative – Facility for Rare Isotope Beams

- Laboratory Director Konrad Gelbke, Project Director Thomas Glasmacher
- Estimate of TPC $614.5M
- Project completion in 2020, managed for early completion in 2018
- Key features (unique)
 - 400 kW heavy ion beams
 - Efficient acceleration (multiple charge states)
 - Stopped and reaccelerated, separated beams
- Space for
 - Reaccelerated beams, uranium to 12 (15) MeV/u
 - Isotope harvesting
FRIB Facility Layout

- Fast Beam Area
- Gas Stopping
- Stopped Beam Area
- Reaccelerated Beam
- Reaccelerator
- Fragment Separator
- Production Target Systems
- Beam Delivery System (201 MeV/u)
- Folding Segment 1 (17 MeV/u)
- Linac Segment 1
- Folding Segment 2 (148 MeV/u)
- Linac Segment 2
- Linac Segment 3
Details of the FRIB Accelerator

Superconducting RF cavities
4 types
≈ 344 total
$E_{\text{peak}} \approx 30 \text{ MV/m}$

$B = 0.04 \quad \beta = 0.08 \quad \beta = 0.2 \quad \beta = 0.5$
What New Nuclides Will FRIB Produce?

- FRIB will produce more than 1000 NEW isotopes at useful rates (4500 available for study)
- Theory is key to making the right measurements
- Exciting prospects for study of nuclei along the drip line to mass 120 (compared to 24)
- Production of most of the key nuclei for astrophysical modeling
- Harvesting of unusual isotopes for a wide range of applications

Rates are available at http://groups.nscl.msu.edu/frib/rates/
Notional Equipment Layout for Fast, Stopped, and ReA3-ReA12

- FRIB experimental areas will use existing NSCL augmented by a new ReA12 experimental area (funded by MSU, to be completed Sept 1, 2011)
- ReA12 Upgrade is essential for much of the science of FRIB
Key FRIB component: Beam Stopping

- Cyclotron gas stopper
- Linear gas stopper
- Solid stopper (LLN (Belgium), KVI (Netherlands))

Beams for precision experiments at very low-energies or at rest and for reacceleration
ReAccelerator (3 MeV/u) (ReA3): Concept

![Diagram showing the ReA3 concept]

Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion efficiency for all elements</td>
<td>> 20 %</td>
<td>EBIT charge breeder + high efficiency linac</td>
</tr>
<tr>
<td>Beam rate capabilities</td>
<td>10^8 ions/sec</td>
<td>Hybrid EBIS/T charge breeder</td>
</tr>
<tr>
<td>High beam purity</td>
<td></td>
<td>A1900, EBIT CB, Q/A</td>
</tr>
<tr>
<td>Low energy spread, short pulse length</td>
<td>1keV/u, 1nsec</td>
<td>Multiharmonic external buncher and tight phase control in SRF linac</td>
</tr>
</tbody>
</table>

D. Leitner

FRIIB - Facility for Rare Isotope Beams

Brad Sherrill EBSS July 2011, Slide 28
Energy upgrade of ReA3
High priority for NSCL/FRIB user community

ReA3 (commissioning in 2012?)

Upgrade path to ReA6 requires minor disruption of ReA3 operations
Upgrade path from ReA6 to ReA12 is non-disruptive
ReA3 and Upgrade Path to Higher Energies
(ReA6 and ReA12)

• PAC 37 will be held in late 2011 or early 2012
 – Proposals for reaccelerated beam experiments with ReA3 will be accepted
 – Continue to accept proposals for fast and stopped beam experiments

• Earliest start of (small scale) user program January 2013

• Operations budget has been approved by NSF

• Funding proposal has been submitted to NSF (pending)
ISAC: Highest power for On-Line facilities, we go up to 100µA @ 500MeV DC proton

ISAC has 3 exper. areas:
- Low energy (60keV)
- ISAC I (up 1.8 MeV/u)
- ISAC II (up to 16MeV/u, presently upgraded)

Suite of experimental stations:
- TRINAT, Beta-NMR, 8pi, tape-station, TITAN, Co-linear laser spec, polarised beam line, etc
- DRAGON, TUDA, TACTIC, GPS, TIGRESS, EMMA (2011), HERACLES

Target material for beam production includes U (UO and UC license)
Ion sources: surface, laser, FEBIAD, ECR (test)
TRIUMF part of collaborations for target and ion source R&D

Gordon Ball, TRIUMF
Present status of the Ariel Project

- 50 MeV, 500 kW superconducting e-linac funded
- Matching funding from BC province for buildings (funded June 2010)
- Second proton beamline deferred until next 5YP

Gordon Ball, TRIUMF
Fission products of 252Cf spontaneous fission stopped in gas and accelerated
CARIBU gives access to exotic beams not available elsewhere.
Physics with beams from CARIBU (1 & 2 nucleon transfer reactions) needs the new energy regime opened by the Energy Upgrade (12 MeV/u).
Solenoid Spectrometer greatly expands the effectiveness of both the fission fragment beams and the existing in-flight RIB program at these higher energies.
RIKEN RI Beam Factory (RIBF)

Intense Heavy Ion beams (up to U) up to 3454 MeV at SRC
Fast RI beams by projectile fragmentation and U-fission at BigRIPS
Operation since 2007
SRC: World Largest (Heaviest) Cyclotron

- $K = 2500$ MeV
- 8300 tons
- 5.36 m extraction radius
- 6 sector magnets
- four main RF cavities
Facility for Antiproton and Ion Research

- Beams at 1.5 GeV/u
- 10^{12}/s Uranium
- Research
 - Compressed matter
 - Rare isotopes
 - Antiproton
 - Plasma
 - Atomic physics
- Completion of the first stages are planned around 2018

http://www.fair-center.de/index.php?id=1
Closing Thoughts

• We have entered the age of designer atoms
 – new tool for science
• FRIB (and other facilities) will allow production of a wide range of new designer isotopes
 – Necessary for the next steps in accurate modeling of atomic nuclei
 – Necessary for progress in astronomy (chemical history, mechanisms of stellar explosions)
 – Opportunities for the tests of fundamental symmetries
 – Important component of a future U.S. isotopes program
• There are significant challenges remaining in modeling and understanding the best production mechanism