Overview of Nuclear Reactions

Compound and Direct Reactions

Types of direct reactions
Overview of Nuclear Reactions

Compound and Direct Reactions

Types of direct reactions

Elastic Cross Sections

Phase Shifts from Potentials

Integral Expressions
Classification by Outcome

1. **Elastic scattering:**
 projectile and target stay in their g.s.

2. **Inelastic scattering:**
 projectile or target left in excited state

3. **Transfer reaction:**
 1 or more nucleons moved to the other nucleus

4. **Fragmentation/Breakup/Knockout:**
 3 or more nuclei/nucleons in the final state

5. **Charge Exchange:**
 A is constant but Z (charge) varies, e.g. by pion exchange

6. **Multistep Processes:**
 intermediate steps can be any of the above
 (‘virtual’ rather than ‘real’)
7. **Deep inelastic collisions:**
 Highly excited states produced

8. **Fusion:**
 Nuclei stick together

9. **Fusion-evaporation:**
 fusion followed by particle-evaporation and/or gamma emission

10. **Fusion-fission:**
 fusion followed by fission

The first 6 processes are *Direct Reactions* (DI)
The last 3 processes give a *Compound Nucleus* (CN).
Compound and Direct Reactions

So when two nuclei collide there are 2 types of reactions:

1. Nuclei can coalesce to form highly excited **Compound nucleus (CN)** that lives for relatively long time. Long lifetime sufficient for excitation energy to be shared by all nucleons. If sufficient energy localised on one or more nucleons (usually neutrons) they can escape and CN decays. **Independence hypothesis**: CN lives long enough that it loses its memory of how it was formed. So probability of various decay modes independent of entrance channel.

2. Nuclei make ‘glancing’ contact and separate immediately, said to undergo **Direct reactions (DI)**. Projectile may lose some energy, or have one or more nucleons transferred to or from it.
Location of reactions:

CN reactions at small impact parameter,

DI reactions at surface & large impact parameter.

CN reaction involves the whole nucleus.

DI reaction usually occurs on the surface of the nucleus. This leads to diffraction effects.

Duration of reactions:

A typical nucleon orbits within a nucleus with a period of $\sim 10^{-22}$ sec. [as K.E. ~ 20 MeV].

If reaction complete within this time scale or less then no time for distribution of projectile energy around target \Rightarrow DI reaction occurred. CN reactions require $\gg 10^{-22}$ sec.
Angular distributions:

In DI reactions differential cross section strongly forward peaked as projectile continues to move in general forward direction.

Differential cross sections for CN reactions do not vary much with angle (not complete isotropy as still slight dependence on direction of incident beam).
Types of direct reactions:

Can identify various types of DI processes that can occur in reactions of interest:

1. **Elastic scattering**: \(A(a, a)A \) – zero Q-value — internal states unchanged.

2. **Inelastic scattering**: \(A(a, a')A^* \) or \(A(a, a^*)A^* \). Projectile \(a \) gives up some of its energy to excite target nucleus \(A \). If nucleus \(a \) also complex nucleus, it can also be excited.

[If energy resolution in detection of \(a \) not small enough to resolve g.s. of target from low-lying excited states then cross section will be sum of elastic and inelastic components. This is called **quasi-elastic scattering**].
3. **Breakup reactions**: Usually referring to breakup of projectile \(a \) into two or more fragments. This may be **elastic** breakup or **inelastic** breakup depending on whether target remains in ground state.

4. **Transfer reactions**:
 - Stripping:
 - Pickup:

5. **Charge exchange reactions**: mass numbers remain the same. Can be elastic or inelastic.
Some terminology

Reaction channels:

In nuclear reaction, each possible combination of nuclei is called a *partition*.

Each partition further distinguished by state of excitation of each nucleus and each such pair of states is known as a *reaction channel*.

The initial partition, $a + A$ (both in their ground states) is known as the incident, or entrance channel. The various possible outcomes are the possible exit channels.

In a particular reaction, if not enough energy for a particular exit channel then it is said to be closed.
Spherical Potentials

Non-relativistic, 2-body formalism of Schrödinger equation (SE). Look at 2-body system in potential $V(r)$

$$r = (r_1 - r_2)$$

$$R = (m_1 r_1 + m_2 r_2)/(m_1 + m_2)$$

The time-independent Schrödinger equation is

$$\hat{H}\psi = E\psi \quad (1)$$

The Hamiltonian for the system is

$$\hat{H} = -\frac{\hbar^2}{2m_1} \nabla r_1 - \frac{\hbar^2}{2m_2} \nabla r_2 + V(r)$$

$$= -\frac{\hbar^2}{2M} \nabla R - \frac{\hbar^2}{2m} \nabla r + V(r) \quad (2)$$

$[m = m_1 m_2/(m_1 + m_2) \text{ and } M = m_1 + m_2]$
Thus can look for separable solutions of the form

\[\Psi(R, r) = \phi(R)\psi(r) \]

(3)

Substituting for \(\Psi \) back in SE (1) gives LHS function of \(R \) and RHS function of \(r \). Thus both equal to common constant, \(E_{cm} \). Hence

\[-\frac{\hbar^2}{2M} \nabla_R^2 \phi(R) = E_{cm} \phi(R) \]

(4)

and

\[\left(-\frac{\hbar^2}{2m} \nabla_r^2 + V(r) \right) \psi(r) = E_{rel} \psi(r) \]

(5)

where \(E_{rel} = E - E_{cm} \).
In scattering, if m_1 is projectile incident on stationary target m_2 then

$$E_{cm} = \frac{m_1}{m_1 + m_2} E$$

$$E_{rel} = \frac{m_2}{m_1 + m_2} E$$

Solution to (4) is simple: $\phi(R) = A e^{iK \cdot R}$ which is plane wave. Thus c.o.m. moves with constant momentum $\hbar K$ and does not change after scattering. (Note, $E_{cm} = \frac{\hbar^2 K}{2M}$).

The real physics is in Eq.(5).
Spherical Potentials: $\psi(r)$ from $V(r)$

If incident beam ~ 1 cm wide, this is 10^{13} fm $= 10^{12}$ × nuclear size).

Thus beam can be represented by plane wave $e^{i k \cdot r}$.
As $|r| \to \infty$ (i.e. moving away radially from scattering centre),

$$\psi(r) \to N \left(e^{ik \cdot r} + f(\theta, \varphi) \frac{e^{ikr}}{r} \right) \quad (6)$$

where k is defined as $E_{\text{rel}} = \hbar^2 K / 2m$. Take $N = 1$.

In QM, flux (probability current density) is given by

$$J = \text{Re} \left[\psi^* \left(- \frac{i\hbar}{m} \nabla_r \right) \psi \right]$$

For incident flux, $\psi_{\text{inc}} = e^{ik \cdot r}$ and

$$J_{\text{inc}} = \text{Re} \left[e^{-ik \cdot r} \left(- \frac{i\hbar}{m} \nabla_r \right) e^{ik \cdot r} \right] = \frac{\hbar k}{m} \quad (7)$$
Cross Section

For scattered flux \(\psi_{scat} = f(\theta, \varphi) \frac{e^{ikr}}{r} \) and hence we obtain

\[
J_{scat} = J_{inc} \frac{|f(\theta, \varphi)|^2}{r^2} \hat{r}
\] \hspace{1cm} (8)

Define the **differential cross-section** (in units of area) as

The number of particles scattered into unit solid angle per unit time, per unit incident flux, per target point,

\[
\text{so} \quad \frac{d\sigma}{d\Omega} = |f(\theta, \varphi)|^2. \quad \hspace{1cm} (9)
\]
What does $f(\theta, \varphi)$ look like?

We know what the solution must look like asymptotically:

$$\psi(r) \rightarrow N \left(e^{ik\cdot r} + f(\theta, \varphi) \frac{e^{ikr}}{r} \right)$$

(10)

For $V(r)$ a central potential, choose partial wave solutions

$$\psi(r) = \sum_{\ell} \frac{u_{\ell}(r)}{kr} Y_{\ell 0}(\theta)$$

(11)

and choose z-axis parallel to incident beam, so $e^{ik\cdot r} = e^{ikz}$.

Then can write radial Schrödinger equation as

$$\frac{d^2 u_{\ell}}{dr^2} + \left[k^2 - \frac{2m}{\hbar^2} V(r) - \frac{\ell(\ell + 1)}{r^2} \right] u_{\ell} = 0$$

(12)
Asymptotic Solutions

Choose $V(r) = 0$ for $r > r_0$. Beyond r_0 get free solution

$$u''_\ell + \left[k^2 - \frac{\ell(\ell + 1)}{r^2} \right] u_\ell = 0 \quad (13)$$

Free solution is related to Coulomb functions

$$r > r_0 : \quad u_\ell = A_\ell F_\ell(kr) + B_\ell G_\ell(kr) \quad (14)$$

\[
\begin{align*}
&\uparrow & \quad \quad \uparrow \\
&kr j_\ell(kr) & -kr n_\ell(kr) \\
&(\text{regular}) & (\text{irregular})
\end{align*}
\]

$$r \to \infty : \quad \to \sin(kr - \ell \pi/2) \quad \cos(kr - \ell \pi/2)$$
Phase Shifts

As $r \to \infty$

$$u_\ell \rightarrow A_\ell \sin(kr - \ell\pi/2) + B_\ell \cos(kr - \ell\pi/2) = C_\ell \sin(kr - \ell\pi/2 + \delta_\ell)$$ \hspace{1cm} (15)

where δ_ℓ is known as the phase shift, so $\tan \delta_\ell = B_\ell/A_\ell$ here.

If $V = 0$ then solution must be valid everywhere, even at origin where it has to be regular. Thus $B_\ell = 0$.

So, asymptotically (long way from scattering centre):

For $V = 0$ \hspace{1cm} $u_\ell = A_\ell \sin(kr - \ell\pi/2)$

and for $V \neq 0$ \hspace{1cm} $u_\ell = C_\ell \sin(kr - \ell\pi/2 + \delta_\ell)$ \hspace{1cm} (16)

Thus, switching scattering potential ‘on’ shifts the phase of the wave function at large distances from the scattering centre.
Scattering amplitudes from Phase Shifts

Now substituting for u_ℓ from Eq.(16) back into Eq.(11) for $\psi(r)$, and after some angular momentum algebra, we obtain a scattering wave function which, when equated with the required asymptotic form of Eq.(10) gives

$$f(\theta) = \frac{1}{k} \sum_\ell (2\ell + 1) T_\ell P_\ell(\cos \theta)$$ \hspace{1cm} (17)

where

$$T_\ell = e^{i\delta_\ell} \sin \delta_\ell = \frac{1}{2i} (S_\ell - 1) .$$ \hspace{1cm} (18)

T_ℓ is the partial wave T-matrix.

S_ℓ is the partial-wave S-matrix.

They are connected to the T-matrix (see later).

There is no dependence on φ because of central potentials.
Properties of the S-matrix S_ℓ:

The S-matrix element is a complex number $S_\ell = e^{2i\delta_\ell}$

1. For purely diffractive (real) potentials $|S_\ell| = 1$. This is called \textit{unitarity}, and is the conservation of flux. δ_ℓ is usually positive for attractive potentials.

2. For absorptive (complex) potentials, $|S_\ell| \leq 1$. The total absorption=fusion cross section is

\[
\sigma_A = \frac{\pi}{k} \sum_\ell (2\ell + 1)(1 - |S_\ell|^2) \quad (19)
\]
ℓ-dependence of the S-matrix S_ℓ:

1. The ℓ value (partial wave) where $\text{Re}(S_\ell) \sim 0.5$ is the **grazing** ℓ value.

2. Partial wave ℓ related to impact parameter b in semiclassical limit: $\ell = k b$

Typical dependence of S_ℓ on ℓ for scattering from an absorptive optical potential:

Absorption when $|S_\ell|^2 < 1$ in the interior.
Resonances:

Occur when two particles trapped together (eg for time τ).

1. Give energy peaks in cross sections with fwhm $\Gamma \sim \hbar/\tau$.
2. Phase shifts typically rise rapidly through $\pi/2$ (90°) as
 $$\delta_{\text{res}}(E) = \arctan \left(\frac{\Gamma}{2E_r - E} \right) + \delta_{bg}$$
 for peak at energy E_r.
3. Cross section peak $\sigma(E) = \frac{4\pi}{k^2} (2L+1) \frac{\Gamma^2 / 4}{(E-E_r)^2 + \Gamma^2 / 4} + \sigma_{bg}$

![Graph of Resonances](image)
Free Green’s function $G_0(E)$

Can write the Schrödinger equation as

$$(E - H) \psi = 0 \quad \text{or} \quad (E - H_0) \psi = V \psi \quad (20)$$

where $H = H_0 + V$. Thus

$$\psi = (E - H_0)^{-1} V \psi = G_0(E) V \psi \quad (21)$$

$G_0(E)$ is the Green’s operator.

Eq.(21) is not general solution for ψ as can add on solution of homogeneous equation

$$(E - H_0) \chi = 0 \quad (22)$$
Lipmann-Schwinger equation

General solution of Eq.(20) is

$$\psi = \chi + G_0(E) \, V \, \psi$$ \hspace{1cm} (23)

This is iterative

$$\psi = \chi + G_0 \, V \, \chi + G_0 \, V \, G_0 \, V \, \chi + \ldots$$ \hspace{1cm} (24)

Eq.(23) can be written in integral form as the Lipmann-Schwinger equation

$$\psi(r) = \chi(r) + \int dr' \, G(r, r') \, V(r') \, \psi(r')$$ \hspace{1cm} (25)

where $G(r, r')$ is the Green’s function.
Integral expression for the Scattering Amplitude

The $\chi(r) = e^{ik \cdot r}$ = incident plane wave,

and we use $\psi_k^{(+)}(r)$ for the scattering wave function.

(i.e. incident momentum k and $(+)$ for outgoing waves solution).

Comparing Eq.(25) with required asymptotic form for ψ we see that integral term must tend to

$$f(\theta) \frac{e^{ikr}}{r} \quad \text{as} \quad |r| \to \infty . \quad (26)$$

Thus, using properties of Green’s function, with k' at angle θ,

$$f(\theta) = - \frac{m}{2\pi \hbar^2} \int d\mathbf{r} \, e^{-i\mathbf{k}' \cdot \mathbf{r}} \, V(r) \, \psi_k^{(+)}(\mathbf{r}) . \quad (27)$$
In Dirac (bra-ket) notation we write this

\[f(\theta) = -\frac{m}{2\pi\hbar^2} \langle k' | V | \psi_k^{(+)} \rangle \] \tag{28}

\[= -\frac{m}{2\pi\hbar^2} T(k', k) \] \tag{29}

\(T(k', k) \) is known as the **Transition matrix element**.
Reactions Theory II

Ian Thompson

Nuclear Theory and Modeling Group
Lawrence Livermore National Laboratory
I-Thompson@llnl.gov

LLNL-PRES-491271
Non-elastic Cross Sections
Non-elastic Cross Sections

How?

A Code and a Book
Non-elastic Cross Sections

How?

A Code and a Book

Physics of Nuclear Reactions

Elastic Scattering

Inelastic Scattering

Transfer Reactions

Breakup Reactions

Fusion Reactions

Compound Nucleus Decays After Fusion
Multi-channel Scattering

Use for inelastic, transfer, breakup channels (etc) in addition to elastic.

Two channel (1=elastic, 2=reaction) make **coupled channels**:

\[
\begin{align*}
[T_1 + U_1 - E_1]\psi_1(r) + V_{12}\psi_2(r) &= 0 \\
[T_2 + U_2 - E_2]\psi_2(r) + V_{21}\psi_1(r) &= 0.
\end{align*}
\]

(1)

Forward coupling:

\(V_{21}\psi_1(r)\) gives effect of channel 1 on channel 2,

Back coupling:

\(V_{12}\psi_2(r)\) gives effect of channel 2 on channel 1
If channel 2 is weak, we can neglect the $V_{12}\psi_2(r)$ term: the back effect on channel 1. This equals the Born Approximation:

$$[T_1 + U_1 - E_1]\psi_1(r) + V_{12}\psi_2(r) = 0$$

$$\psi_2(r) = -[T_2 + U_2 - E_2]^{-1}V_{21}\psi_1(r)$$ \hspace{1cm} (2)$$

So the DWBA scattering amplitude in channel 2 is

$$f_{21}(\theta) = -\frac{m_2}{2\pi\hbar^2} \langle k_2 \mid V_{21} \mid \psi_1 \rangle$$ \hspace{1cm} (3)$$

DWBA is a simplified method to give scattering amplitudes of non-elastic channels.
Coupled Channels Calculations

Fresco
Coupled Reaction Channels Calculations
www.fresco.org.uk

About Fresco

Fresco is a program developed by Ian Thompson over the period 1983 - 2006, to perform coupled-reaction channels calculations in nuclear physics. It uses Fortran 90 or Fortran 95 on Unix, Linux, Vax and Windows machines.

Sfresco is an additional version of Fresco, to provide Chi-squared searches of potential and coupling parameters, and to fit additional R-matrix terms in hybrid models.

Free!
New Book (available now!)

Nuclear Reactions for Astrophysics
Principles, Calculation and Applications of Low-Energy Reactions

Ian J. Thompson
Lawrence Livermore National Laboratory, Livermore, CA 94551, U.S.A.
and Filomena M. Nunes
National Superconducting Cyclotron Laboratory, East Lansing, MI 48824, U.S.A.

Cambridge University Press: http://www.cambridge.org/9780521856355
Physics of Nuclear Reactions

- Halo Scattering: Elastic
- Halo Total Reaction Cross Section
- Transfer Reactions
- Breakup Reactions
- Halo Fusion Reactions
Halo Scattering: Elastic

Depends on

- Folded potential from densities
- Halo breakup effects, i.e.
- Polarisation potential from breakup channel
Inelastic Scattering

Need a structure model for the couplings
Choose here a rotational model: $\beta_2 = 0.205$.

Theory options:

- First order
- Second order
- All orders

$\alpha + ^{20}\text{Ne}(0^+–2^+–4^+)$ inelastic cross sections

Cross section (mb/sr)

Scattering angle (degrees)
Four- and Six-body Scattering

\[\text{n}=4 \]

\[^6\text{He}+p \]

\[\alpha \]

\[r_1, r_2, b_1, b_2 \]

\[\text{[mb/(GeV/c)^2]} \]

\[10^4 \]

\[10^3 \]

\[10^2 \]

\[0.00 \]

\[0.01 \]

\[0.02 \]

\[0.03 \]

\[0.04 \]

\[0.05 \]

\[-t [(\text{GeV/c})^2] \]

\[2.33 \text{ fm} \]

\[2.50 \text{ fm} \]

\[2.77 \text{ fm} \]

\[^6\text{He}+p \quad 717 \text{ MeV/nucleon} \]

\[^8\text{He}+p \]

\[\alpha \]

\[r_1, r_2, b_1, b_4 \]

\[x_4 \]

\[1, 2, 3, 4 \]

\[\text{Al-Khalili and Tostevin, PRC 57 (1998) 1846} \]

\[\text{Tostevin et al., PRC 56 (1997) R2929} \]
Halo Total Reaction Cross Section

Depends on

- Densities and NN scattering, as usual
- But: Effects of Halo Breakup (virtual and real) are big!
- Use few-body Glauber, not Optical Limit Glauber
- New radii are larger.
Transfer Reactions to Probe Single-Particle Structure

- Weak, so use DWBA
- One-nucleon transfers, \((p,d)\) shape shows \(L\)-value of orbital magnitude gives spectroscopic factor
- Two-neutron transfers, \((p,t)\) Magnitude depends on s-wave pairing in halo Only relative magnitudes reliably modeled.
- But: full analysis requires multi-step calculations
Stripping (Breakup) Reactions: Measuring Momentum

Probing the momentum content of bound states by breakup reactions

Consider momentum components p_{\parallel} of the heavy residue parallel to the beam direction. In the projectile rest frame …………..
Stripping Reactions: Nuclear Structure

Glauber (eikonal) theory of breakup:

Stripping Reactions: Removing a Neutron

Reaction 9Be(17C, 16C$_\gamma$)X

Measured γ from core decays helps to fix the final state.

[Maddalena et al., PRC63(01)024613]
Halo Fusion: an Unsolved Problem

In low-energy Halo Fusion (near the Coulomb barrier):
Halo neutrons should affect fusion:

- **Increase fusion**, from neutron attractions & neutron flow
- **Decrease complete fusion**, from breakup
- **Increase fusion**, from molecular states & resonances

So: need experiments + good theories!
Some experiments already performed with 6He and 9Be, but theoretical interpretations are still unclear.
Compound Nucleus Decays After Fusion

Flux does not ‘disappear’ the nuclei fuse together, but reappears as a mixture of narrow resonances of the compound system.

- Narrow resonances \Rightarrow long-lived \Rightarrow many oscillations to decay
- Bohr hypothesis: decay independent of production method
- So decay by all possible means α:
 - emission of γ, n, p, α, maybe fission.
- Average the cross sections over (say) 0.1 MeV, $\langle \sigma_{\alpha'\alpha} \rangle$ to cover many resonances
- Hauser-Feshbach theory gives the statistical branching ratios between the channels α.

So we can calculate residual nuclear ground states after all emissions are finished.
‘Transmission coefficient’ $T_\alpha(E) = 1 - |S_\alpha(E)|^2$ is the probability of CN production for scattering at energy E.

Transmission coefficients for neutrons incident on ^{90}Zr in various partial waves L, using a global optical potential:
Decay paths and Branching Probabilities

- So consider **all possible exit channels** α'' and normalize to total
- **Hauser-Feshbach cross section** $\alpha \rightarrow \alpha'$ (simple form):

$$\langle \sigma_{\alpha' \alpha}(L; E) \rangle = \frac{\pi}{k^2} (2L+1) \frac{T_{\alpha} T_{\alpha'}}{\sum_{\alpha''} T_{\alpha''}}$$

- The same T_{α} are used for producing as for decaying.
- If we do not know all the α, average over a level density $\rho(E)$:
- **Decay paths starting from neutron + $^A X$:**
Result of a Hauser-Feshbach Calculation

Using the code **TALYS**:

![Diagram of n + 181 Ta Hauser-Feshbach calculation](image)

- (n,3n)
- (n,2n) to 180Ta (gs)
- (n,2n) to 180Tam
- (n,2n) sum
- (n,n$'$)
- (n,γ) capture to 181Ta