These questions are approximately equivalent to a single midterm exam. Please note that the numbering is out of order because these problems were taken from various previous exams, answer are given next to the problems.

5. \(\vec{F}_{\text{center}} = m_a \vec{a} \) and \(\vec{F}_{\text{center}} = F_{\text{gravitational}} \). Since \(F_{\text{grav}} = \frac{GMm}{r^2} \) where \(M \) is the mass of the sun and \(m \) is the mass of the object, we find:

\[
ma = \frac{GMm}{r^2}
\]

\[
a = \frac{GM}{r^2}
\]

therefore \(a_c \) does not depend on the mass of the object. **Answer C**

6. \(F_{\text{grav}} = \frac{GMm}{r^2} \) and since \(m_2 > m_1 \) the gravitational force acting on \(m_2 \) is greater \((r_1=r_2) \). **Answer A**

7. Kepler’s 3\(^{rd}\) law states that \(r^3 = \frac{T^2}{K} \), where \(K \) is a constant. Since \(r_1 = r_2, T_1 = T_2 \), **answer C**

8. Kepler’s 3\(^{rd}\) law states that \(r^3 = \frac{T^2}{K} \), where \(K \) is a constant. Since \(r_3 > r_2, T_3 > T_2 \), **answer A**
6) This is a perfectly inelastic collision:

\[m_1v_{1i} + m_2v_{2i} = (m_1+m_2)v_f \]

where 1 relates to Dora and 2 to Billy, “i” to just prior to the collision and “f” to after the collision. Use \(m_1 = m_2 \) and \(v_{2i} = 0 \) to find that \(v_f = 40 \text{ mph} \). answer C

7) elastic collision: use conservation of momentum:

\[m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f} \]

and the simplified equation for conservation of kinetic energy:

\[(v_{1i} - v_{2i}) = (v_{2f} - v_{1f}) \]

with \(m_1 = m_2 \) and \(v_{2i} = 0 \), to find that \(v_{2f} = v_{1i} = 40 \text{ mph} \) (using the answer \(v_{1i} = 40 \text{ mph} \) from 6). answer C.
9) momentum is conserved, no matter what type of collision occurs so answer C

10) mechanical energy is conserved while swinging from A to B, so answer C

11) The collision is perfectly inelastic, so some kinetic energy is lost in the collision, answer A

12) Since some kinetic energy has been lost in the collision, the total energy has also been reduced, answer A

13) The kinetic energy of the bowling ball is
0.5mv^2=0.5*7.5*2.1^2=16.54 J

For the ping pong ball:
0.5mv^2=0.5*0.00245*v^2 which must equal 16.54 J
So v=√(16.54/(0.5*0.00245))=
116.2 m/s, answer B
14) $v = \omega r = 12.6 \times 2 = 6.3 \text{ m}$
$\omega = 450 \text{ rev/min}$
$= 450 \times \frac{2\pi}{60} \text{ rad/s}$
$= 47.12 \text{ rad/s}$
So $v = 6.3 \times 47.12 = 296 \text{ m/s}$
$v = \frac{296}{343} = 0.87 \text{ v_{sound} answer E}$

15) $\text{PE}_i + \text{KE}_i = \text{PE}_f + \text{KE}_f$
$\text{PE}_i = -\frac{GM_{\ast}}{r} m/r = 0 \ (r=\infty)$
$\text{KE}_i = 0$
$\text{PE}_f = -\frac{GM_{\ast}}{r} m/r \text{ where } r = r_{\ast}$
$\text{KE}_f = 0.5mv^2 \text{ so:}$
$\text{PE}_f + \text{KE}_f = 0$
$\frac{GM_{\ast}}{r_{\ast}} = 0.5v^2 \text{ (mass of ball cancels out). Use}$
$G = 6.673 \times 10^{-11} \text{Nm}^2/\text{kg}^2$
To find $v = 2.45 \times 10^6 \text{ answer G}$

16) Use the conservation of momentum:
$m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}$
$15.3 - 22.3 = v_{1f} + v_{2f}$
(masses drop out) and the conservation of KE (simplified):
$(v_{1i} - v_{2i}) = (v_{2f} - v_{1f})$
$15.3 + 22.3 = v_{2f} - v_{1f}$ to find
$V_{2f} = 15.3 \text{ m/s (answer B)}$

31. The motion of an object is described by the equation:
$x = (2.3 \text{ m}) \cos(\pi t / 3.7)$,
where t is assumed to be measured in seconds. What is the frequency (in Hz) of the motion?
$\omega = 2\pi f$ so $2\pi f = \pi / 3.7$ and $f = 0.135 \text{ Hz (answer A)}$

Also: $\omega = 2\pi f$ so $2\pi f = \pi / 3.7$ and $f = 0.135 \text{ Hz (answer A)}$
18) \(I = \Delta p = \text{area under } F-t \text{ diagram.} \)

The area is 52 kgm/s (two triangles of 13 kgm/s each and one square of 26 kgm/s).

Also \(\Delta p = p_f - p_i \) since \(p_i = m v_i = 0 \)

So \(m v_f = 52 \) with \(m = 6.5 \) so \(v_f = 8 \text{ m/s answer B} \)

19) Translational equilibrium: \(\Sigma F = 0 \), in the vertical direction:

\[T_{\text{left}} + T_{\text{right}} - m_{\text{beam}} g - m_{\text{box}} g = 0 \]

so \(800 + 1000 - 9.8 m_{\text{beam}} - 9.8 m_{\text{box}} = 0 \)

This gives: \(m_{\text{box}} = 184 - m_{\text{beam}} \)

Rotational equilibrium (choose rotation point e.g. on the left-hand side, at the left support wire)

\(\Sigma \tau = 0 \quad \tau = Fd \) where \(d \): distance from rotation point. Note that the grav. force on the beam acts at its center of gravity, 4 m (L/2) from the left support wire.

\[0 = T_{\text{left}} - (L/2) * m_{\text{beam}} g - x * m_{\text{box}} g + L T_{\text{right}} = 0 \]

\[-4 * 9.8 * m_{\text{beam}} - 6 * 9.8 * m_{\text{box}} + 8 * 1000 = 0 \] combine with the above to find:

\[-4 * 9.8 * m_{\text{beam}} - 6 * 9.8 * (184 - m_{\text{beam}}) + 8 * 1000 = 0 \] which gives \(m_{\text{beam}} = 142.7 \text{ kg (answer F)} \)
A stainless steel orthodontic wire is applied to a tooth, as shown in the figure above. The wire has an unstretched length of 30 mm and a cross sectional area of 3 mm2. The wire is stretched 0.1 mm. Young’s modulus for stainless steel is 1.8×10^{11} Pa. What is the tension in the wire? (in N)

$Y = \frac{F/A}{\Delta L/L_0}$

$Y = 1.8 \times 10^{11}$ Pa (given)

$A = 3 \text{mm}^2 = 3 \times 0.001 \text{m}^2 = 3 \times 10^{-6} \text{m}^2$

$\Delta L = 0.1 \text{mm} = 1 \times 10^{-4} \text{m}$

$L_0 = 30 \text{mm} = 0.03 \text{m}$

F: tension in wire, you have to solve for it: F = 1800 N (answer E)